Phosphorus NMR and ab initio study of pentaphosphorus dichalcogenide halides \dagger

Bruce W. Tattershall, ${ }^{* a}$ Roger Blachnik ${ }^{* b}$ and Alexander Hepp ${ }^{b}$
${ }^{a}$ Department of Chemistry, University of Newcastle, Newcastle upon Tyne, UK NE1 7RU
${ }^{b}$ Institut für Chemie, Universität Osnabrück, D-49069 Osnabrück, Germany

Received 24th January 2000, Accepted 12th June 2000
Published on the Web 12th July 2000

All twelve molecules $\mathrm{P}_{5} \mathrm{~S}_{n} \mathrm{Se}_{2-n} \mathrm{X}(n=0-2, \mathrm{X}=\mathrm{Cl}, \mathrm{Br}$ or I$)$ have been identified by ${ }^{31} \mathrm{P}$ NMR spectroscopy in mixtures in solution, obtained after thermal reactions of red phosphorus, chalcogens, and phosphorus trihalides. Ab initio geometries of eight of the molecules ($\mathrm{X}=\mathrm{Cl}$ or Br) have been calculated, and deformations of the cages from C_{s} symmetry ascribed to non-bonded intramolecular interactions. Gauge including atomic orbitals (GIAO) calculation, at an economical level, of changes in ${ }^{31} \mathrm{P}$ NMR shieldings on formal atom replacement, has been shown to be a practical method for assignment of NMR spectra and hence identification of these compounds. Approximate calculation of differences in ${ }^{31} \mathrm{P}^{31} \mathrm{P}$ coupling constants, using Natural Bond Orbital analysis and McConnell's equation, provided supporting evidence.

Introduction

The iodide $\mathrm{P}_{5} \mathrm{~S}_{2} \mathrm{I} \mathbf{1}$ may be made as a mixture with $\alpha-\mathrm{P}_{4} \mathrm{~S}_{3} \mathrm{I}_{2} \mathbf{2}$, $\mathrm{P}_{4} \mathrm{~S}_{3}$ and phosphorus iodides by high-temperature reaction of the elements, ${ }^{1}$ and derivatives $\mathrm{P}_{5} \mathrm{~S}_{2} \mathrm{X}$ may be made from it by replacement of iodine. It also occurs as a minor product, along with $\mathrm{P}_{5} \mathrm{~S}_{2} \mathrm{Bu}^{\mathrm{t}}$, in the light-induced reaction of $\mathrm{P}_{4} \mathrm{~S}_{3}$ with ButI; other compounds $P_{5} S_{2} R$, where R is organic, can be made by thermal reaction of $\mathrm{P}_{4} \mathrm{~S}_{3}$ with RI. ${ }^{2}$ In recent work we have examined the effect on ${ }^{31} \mathrm{P}$ NMR chemical shifts and coupling constants of replacement of sulfur by selenium in $\alpha-\mathrm{P}_{4} \mathrm{E}_{3} \mathrm{I}_{2} \mathbf{2}$, ${ }^{3}$ $\beta-\mathrm{P}_{4} \mathrm{E}_{3} \mathrm{I}_{2} 3,{ }^{4} \beta-\mathrm{P}_{4} \mathrm{E}_{3}(\mathrm{I}) \mathrm{CHI}_{2} 3,{ }^{5}$ and $\mathrm{P}_{3} \mathrm{E}_{2} \mathrm{Se}_{2} \mathrm{X} 4(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$ or I$),{ }^{6}$

1

3

4
where E represents S or Se. The work has allowed considerable insight into the control of the NMR parameters by molecular geometry. One factor which has emerged has been interaction of the exocyclic, ligand atom or group with the chalcogen atoms in the bicyclic structures.

In all of the systems 2-4, the primary reason for nonequivalence of sites for chalcogen substitution is inherent in the connectivity of the skeleton (e.g. the non-equivalence of sites
E_{a} and E_{b} in $\alpha-\mathrm{P}_{4} \mathrm{E}_{3} \mathrm{I}_{2}$ 2) or results from unsymmetric ligand substitution (sites E_{b} and E_{c} in $\beta-\mathrm{P}_{4} \mathrm{E}_{3}(\mathrm{I}) \mathrm{CHI}_{2}$ 3). Molecules $P_{5} \mathrm{E}_{2} \mathrm{X} 1$ are interesting because here the sites E_{a} and E_{b} are non-equivalent not because of different connectivity, but only because the ligand X attached to pyramidal phosphorus atom P_{D} points in the direction of E_{a} and away from E_{b}, and the lone pair of electrons on P_{D} points towards E_{b} rather than E_{a}. Investigation of the effects of endocyclic selenium substitution in molecules $\mathrm{P}_{5} \mathrm{~S}_{2} \mathrm{X}$, along with the effects of exocyclic halogen substitution, would provide therefore an opportunity of isolating one of the several factors which influence relative isomer stability, as well as ${ }^{31} \mathrm{P}$ NMR parameters of these fused ring systems. The closed nature of the $\mathrm{P}_{5} \mathrm{E}_{2}$ cage also offers the advantage of reducing to a more comprehensible level the number of possibilities for geometric change consequent upon replacement of sulfur by selenium, aiding the rationalisation of changes in the NMR parameters.

We have found that $\mathrm{P}_{5} \mathrm{Se}_{2} \mathrm{I}$ can be made in the same way as its sulfur analogue, by high temperature reaction of the elements, and that use of a mixture of sulfur and selenium gives also both possible isomers of $\mathrm{P}_{5} \mathrm{SSeI}$, but we now report that the use of phosphorus trihalides as sources of halogen gives generally the best methods for making, in sufficient concentrations for study by ${ }^{31} \mathrm{P}$ NMR, the whole series of twelve molecules $\mathrm{P}_{5} \mathrm{E}_{2} \mathrm{X}$, where $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$ or I , and E_{2} represents all four permutations of S and Se in the chalcogen positions E_{a} and E_{b}. All phosphorus chemical shifts and ${ }^{31} \mathrm{P}-{ }^{31} \mathrm{P}$ coupling constants have been measured. It has not been possible so far to obtain ${ }^{77} \mathrm{Se}$ NMR spectra, nor ${ }^{77}$ Se satellites in the ${ }^{31} \mathrm{P}$ spectra of sufficient intensity for satisfactory analysis.

To provide information on changes of molecular geometry on chalcogen or halogen substitution, we have calculated the geometries of the eight molecules $\mathrm{P}_{5} \mathrm{E}_{2} \mathrm{X}(\mathrm{X}=\mathrm{Cl}$ or Br$)$ by $a b$ initio methods, and have used the gauge including atomic orbitals (GIAO) method at an economical level of calculation as a means of predicting the directions of change of ${ }^{31} \mathrm{P}$ NMR chemical shifts with these substitutions. We now report that this allowed certain assignment of the spectrum of each $\mathrm{P}_{5} \mathrm{E}_{2} \mathrm{X}$ molecule in the product mixtures, as an alternative to comparison of NMR parameters with those of related molecules $\left[\mathrm{P}_{4} \mathrm{E}_{3} \mathrm{X}_{2}\right.$ 2,3 or $\left.\mathrm{P}_{3} \mathrm{E}_{2} \mathrm{Se}_{2} \mathrm{X} 4\right]$ and use of empirical relationships

Table 1 Relative concentrations of products of types $P_{4} E_{3}$ or $P_{5} E_{2} X$, starting from atomic ratio $S: S e=1: 1$

X	Eqn.	Relative to:	$\mathrm{P}_{4} \mathrm{~S}_{3}$	$\mathrm{P}_{4} \mathrm{~S}_{2} \mathrm{Se}$	$\mathrm{P}_{4} \mathrm{SSe}_{2}$	$\mathrm{P}_{4} \mathrm{Se}_{3}$	$\mathrm{P}_{5} \mathrm{~S}_{2} \mathrm{X}$	$\mathrm{P}_{5} \mathrm{~S}_{\mathrm{a}} \mathrm{Se}_{\mathrm{b}} \mathrm{X}$	$\mathrm{P}_{5} \mathrm{Se}_{\mathrm{a}} \mathrm{S}_{\mathrm{b}} \mathrm{X}$	$\mathrm{P}_{5} \mathrm{SSeX}$ both isomers	$\mathrm{P}_{5} \mathrm{Se}_{2} \mathrm{X}$
I	(1)	Both types	24	40	23	3.9	2.1	3.3	0.96	4.2	1.9
		Each type	27	44	25	4.3	26	40	12	51	23
		$\left(\right.$ Stat. distrib.) ${ }^{a}$	27	44	25	4.5	26			50	24
B	(1)	Both types	24	41	22	4.8	2.2	2.8	0.99	3.7	2.0
		Each type	26	44	24	5.2	28	35	13	48	25
		(Stat. distrib.) ${ }^{a}$	26	44	25	4.7	26			50	24
Cl	(2)	Both types	19	39	31	9.5	0.54	0.67	0.22	0.89	0.52
		Each type	19	40	31	9.7	28	34	11	46	27
		(Stat. distrib.) ${ }^{a}$	18	41	33	8.5	26			50	24

${ }^{a}$ Statistical distribution within each series $P_{4} E_{3}$ or $P_{5} E_{2} X$, based on the total S : Se ratio observed for products in that series.
to composition and geometry already developed. This offers a future means of identification of series of polycyclic molecules where relevant empirical knowledge has not already been built up, which is readily practicable as a routine research tool using current technology. We also show that supporting evidence for the identification could be obtained by approximate calculation of changes in ${ }^{31} \mathrm{P}-{ }^{31} \mathrm{P}$ coupling constants, by a method which uses only GAUSSIAN 94 software. ${ }^{7}$

Preparative methods

The usual method for the synthesis of phosphorus chalcogenide chlorides or bromides, by replacement of iodine in the corresponding iodides, using metalorganic or metal halides, which works well for $\mathrm{P}_{4} \mathrm{E}_{3} \mathrm{X}_{2} \mathbf{2}$ or $\mathbf{3}^{8,9}$ and which is possible for $\mathrm{P}_{5} \mathrm{~S}_{2} \mathrm{X},{ }^{1}$ gave only very low yields when applied to molecules $\mathrm{P}_{5} \mathrm{E}_{2} \mathrm{X}$ containing at least one selenium atom. A further disadvantage of the halogen substitution method for making samples for ${ }^{31} \mathrm{P}$ NMR spectroscopy is that unchanged iodides complicate the interpretation of the spectra. Experiment showed that the most useful general route to $\mathrm{P}_{5} \mathrm{E}_{2} \mathrm{X}(\mathrm{X}=\mathrm{Cl}$ or Br$)$ was by direct hightemperature synthesis, using the phosphorus trihalide PX_{3} as the source of halogen, and that this method was also best for making $\mathrm{P}_{5} \mathrm{E}_{2} \mathrm{I}$.

In the cases of the bromides and iodides, $\mathrm{P}_{4} \mathrm{E}_{3}$ was made first by heating the elements together, using as E only sulfur, only selenium, or a $1: 1$ mixture of sulfur and selenium, and was recrystallised from CS_{2} before further reaction with PX_{3} and red phosphorus, of which double the amount required by eqn. (1) was taken. The samples, sealed in quartz ampoules,

$$
\begin{equation*}
\mathrm{PX}_{3}+2 \mathrm{P}_{4} \mathrm{E}_{3}+6 \mathrm{P} \longrightarrow 3 \mathrm{P}_{5} \mathrm{E}_{2} \mathrm{X} \tag{1}
\end{equation*}
$$

were subjected to a slow heating program (see Experimental section) to allow time for reaction of volatile halides, before being annealed at $350^{\circ} \mathrm{C}$. Soluble products were extracted by long stirring with CS_{2} at room temperature. Use of preformed $\mathrm{P}_{4} \mathrm{E}_{3}$, instead of taking $\mathrm{P}+\mathrm{E}$ directly, gave a greater proportion of soluble products $\mathrm{P}_{5} \mathrm{E}_{2} \mathrm{X}(\mathrm{X}=\mathrm{Br}$ or I$)$, and, in the mixed sulfur-selenium experiments, the ratio $\mathrm{S}: \mathrm{Se}$ in these was nearer to that taken originally. In contrast, compounds $\mathrm{P}_{5} \mathrm{E}_{2} \mathrm{Cl}$ were obtained, in sufficient yields for study by NMR, only by direct reaction of the chalcogens, using the stoichiometry represented by eqn. (2). Attempts to prepare $\mathrm{P}_{5} \mathrm{ETeI}(\mathrm{E}=\mathrm{S}$ or Se$)$ or $\mathrm{P}_{5} \mathrm{Te}_{2} \mathrm{I}$ by these thermal methods failed.

$$
\begin{equation*}
14 \mathrm{P}+6 \mathrm{E}+\mathrm{PCl}_{3} \longrightarrow 3 \mathrm{P}_{5} \mathrm{E}_{2} \mathrm{Cl} \tag{2}
\end{equation*}
$$

All syntheses resulted in mixtures containing the $\mathrm{P}_{5} \mathrm{E}_{2} \mathrm{X}$ compounds only in low proportion, and attempts to separate the mixtures by fractional crystallisation or HPLC were unsuccessful. Typical compositions of the solutions, measured by ${ }^{31} \mathrm{P}$ NMR integration, were: $\alpha-\mathrm{P}_{4} \mathrm{E}_{3} \mathrm{X}_{2} 30, \mathrm{P}_{4} \mathrm{E}_{3} 50-60$, and $\mathrm{P}_{5} \mathrm{E}_{2} \mathrm{X} 5$
$\mathrm{mol} \%(\mathrm{X}=\mathrm{Br}$ or I$)$, or $\alpha-\mathrm{P}_{4} \mathrm{E}_{3} \mathrm{X}_{2} 3, \mathrm{P}_{4} \mathrm{E}_{3} 90$, and $\mathrm{P}_{5} \mathrm{E}_{2} \mathrm{X} 2$ $\mathrm{mol} \%(\mathrm{X}=\mathrm{Cl})$. The concentrations of $\mathrm{P}_{5} \mathrm{~S}_{2} \mathrm{X}, \mathrm{P}_{5} \mathrm{SSeX}$ (both isomers together) and $\mathrm{P}_{5} \mathrm{Se}_{2} \mathrm{X}$ in the products approximated to statistical distributions within this series, as did the concentrations within the $\mathrm{P}_{4} \mathrm{E}_{3}$ series in the mixtures, but the ratio $\mathrm{S}: \mathrm{Se}$ was higher for $\mathrm{P}_{4} \mathrm{E}_{3}$ (e.g. 1.81:1 in the iodides experiment starting from $\mathrm{S}: \mathrm{Se}=1: 1$) than for $\mathrm{P}_{5} \mathrm{Se}_{2} \mathrm{X}(1.05: 1)$, as shown in Table 1. The loss of selenium relative to sulfur was to form insoluble, amorphous products. Of the two possible isomers $\mathrm{P}_{5} \mathrm{~S}_{\mathrm{a}} \mathrm{Se}_{\mathrm{b}} \mathrm{X}$ and $\mathrm{P}_{5} \mathrm{Se}_{\mathrm{a}} \mathrm{S}_{\mathrm{b}} \mathrm{X}$, the former is thermodynamically more stable (see ab initio results, below) and this isomer is observed in higher concentrations, for any of the three halogens X. Similar preferences for occupation of E_{a} by sulfur have been observed previously in the α - or $\beta-\mathrm{P}_{4} \mathrm{E}_{3} \mathrm{X}_{2} \mathbf{2}, \mathbf{3}, \beta-\mathrm{P}_{4} \mathrm{E}_{3}(\mathrm{I}) \mathrm{CHI}_{2} \mathbf{3}$, or $\mathrm{P}_{3} \mathrm{E}_{2} \mathrm{Se}_{2} \mathrm{X} 4$ series, ${ }^{3-6}$ but now for the first time this can be attributed as due only to the smaller steric interaction between the exocyclic substituent and the chalcogen in position E_{a}, when this is sulfur.

Assignment of phosphorus NMR spectra

The spectra of $\mathrm{P}_{5} \mathrm{~S}_{2} \mathrm{X}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$ or I$)$ have been assigned previously, ${ }^{1}$ and those of $\mathrm{P}_{5} \mathrm{Se}_{2} \mathrm{X}$ could be assigned by analogy, in mixtures containing no sulfur. Multiplets were assigned to one compound rather than the other, within the pairs of isomers $\mathrm{P}_{5} \mathrm{SSeX}$, by comparing their relative intensities and by matching coupling constants between them. Multiplets due to $\mathrm{P}_{\mathrm{C}}, \mathrm{P}_{\mathrm{D}}$ and P_{E} were readily identified by the characteristic ranges of their chemical shifts and by the number of large $\left({ }^{1} J\right)$ or small $\left({ }^{2} J\right)$ splittings they contained. It remained to be decided which member of the pair of isomers was which, and for each isomer which multiplet belonged to P_{A} and which to P_{B}. Previous investigations of the comparable cage structures α - or $\beta-\mathrm{P}_{4} \mathrm{E}_{3} \mathrm{X}_{2}$ 2, $\mathbf{3}^{3,4}$ have shown that replacement of sulfur by selenium resulted in (a) smaller positive values of the transmitted coupling ${ }^{2} J_{\text {P-E-P }}$ and (b) moves of chemical shifts of both connected phosphorus atoms to lower frequency. Possible values of ${ }^{2} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{C}}\right)$ and ${ }^{2} J\left(\mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{C}}\right)$, and of $\delta\left(\mathrm{P}_{\mathrm{A}}\right)$ and $\delta\left(\mathrm{P}_{\mathrm{B}}\right)$, for the two isomers, were compared with corresponding values of $\mathrm{P}_{5} \mathrm{~S}_{2} \mathrm{X}$. For each halogen X , only one of the possible assignments allowed both rules (a and b) to be obeyed for replacement of sulfur by selenium at either possible position. Rules found for compounds $\mathrm{P}_{5} \mathrm{~S}_{2} \mathrm{R},{ }^{1}$ that $\delta\left(\mathrm{P}_{\mathrm{A}}\right)<\delta\left(\mathrm{P}_{\mathrm{B}}\right)$ and ${ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{E}}\right) \geq{ }^{1} J\left(\mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{E}}\right)$, had to be abandoned for the mixed chalcogen compounds, but the assignment was confirmed by the relationship ${ }^{2} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{D}}\right)>$ $\left|{ }^{2} J\left(\mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{D}}\right)\right|$, which remains true for all compounds so far discovered with the $\mathrm{P}_{5} \mathrm{E}_{2}$ skeleton. Of these ${ }^{2} J$ couplings to P_{D}, ${ }^{2} J\left(\mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{D}}\right)$ is negative. This was assumed for previous compounds $\mathrm{P}_{5} \mathrm{~S}_{2} \mathrm{R}$ by analogy with the isoelectronic $\left[\mathrm{P}_{7} \mathrm{H}\right]^{2-}$ ion, ${ }^{10}$ but now for the first time could be demonstrated directly, for compounds $\mathrm{P}_{5} \mathrm{~S}_{\mathrm{a}} \mathrm{Se}_{\mathrm{b}} X$, where P_{A} and P_{B} are close enough in chemical shift, and hence the spectra are sufficiently non-first order, for relative signs of couplings to be deduced from goodness of computer
Table 2 NMR Chemical shifts and coupling constants for $\mathrm{P}_{5} \mathrm{E}_{2} \mathrm{X} 1$

	$\mathrm{P}_{5} \mathrm{~S}_{2} \mathrm{Cl}$	$\mathrm{P}_{5} \mathrm{~S}_{\mathrm{a}} \mathrm{Se}_{\mathrm{b}} \mathrm{Cl}$	$\mathrm{P}_{5} \mathrm{Se}_{\mathrm{a}} \mathrm{S}_{\mathrm{b}} \mathrm{Cl}$	$\mathrm{P}_{5} \mathrm{Se}_{2} \mathrm{Cl}$	$\mathrm{P}_{5} \mathrm{~S}_{2} \mathrm{Br}$	$\mathrm{P}_{5} \mathrm{~S}_{\mathrm{a}} \mathrm{Se}_{\mathrm{b}} \mathrm{Br}$	$\mathrm{P}_{5} \mathrm{Se}_{\mathrm{a}} \mathrm{S}_{\mathrm{b}} \mathrm{Br}$	$\mathrm{P}_{5} \mathrm{Se}_{2} \mathrm{Br}$	$\mathrm{P}_{5} \mathrm{~S}_{2} \mathrm{I}$	$\mathrm{P}_{5} \mathrm{~S}_{\mathrm{a}} \mathrm{Se} \mathrm{b}_{\mathrm{b}} \mathrm{I}$	$\mathrm{P}_{5} \mathrm{Se}_{\mathrm{a}} \mathrm{S}_{\mathrm{b}} \mathrm{I}$	$\mathrm{P}_{56} \mathrm{Se}_{2} \mathrm{I}$
$\delta\left(\mathrm{P}_{\mathrm{A}}\right)$	-70.56	-65.58	-81.64	-77.57	-70.75	-65.43	-81.89	-77.49	-72.08	-65.75	-83.10	-77.69
$\delta\left(\mathrm{P}_{\mathrm{B}}\right)$	-49.48	-64.37	-45.24	-60.23	-52.11	-66.65	-47.53	-62.13	-57.33	-70.84	-52.17	-65.75
$\delta\left(\mathrm{P}_{\mathrm{C}}\right)$	31.64	26.19	22.32	14.48	30.34	23.86	21.14	12.25	29.91	21.46	20.91	10.39
$\delta\left(\mathrm{P}_{\mathrm{D}}\right)$	199.58	206.18	208.89	215.31	169.71	176.21	179.54	185.85	111.35	119.57	122.70	130.96
$\delta\left(\mathrm{P}_{\mathrm{E}}\right)$	-212.59	-198.86	-203.12	-189.16	-209.11	-195.85	-200.04	-186.56	-200.24	-187.51	-191.86	- 178.91
${ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}}\right)$	-193.67(4)	-190.32(4)	-194.3(1)	-191.33(4)	-191.78(1)	-188.44(2)	-192.35(3)	-189.31(3)	-188.58(1)	-185.35(3)	-189.13(3)	-186.26(2)
${ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{E}}\right)$	-168.81(4)	-173.41(4)	-169.2(1)	-173.53(4)	-169.14(1)	-174.04(6)	-169.44(3)	-174.39(3)	-169.08(3)	-173.86(3)	-169.33(3)	-174.40(2)
${ }^{1} J\left(\mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{E}}\right)$	-179.05(4)	-177.38(8)	-184.5(1)	-182.58(4)	-173.51(1)	-171.11(3)	-178.88(3)	-176.80(3)	-168.05(1)	-165.54(3)	-173.60(3)	-171.17(2)
${ }^{1} J\left(\mathrm{P}_{\mathrm{C}} \mathrm{P}_{\mathrm{D}}\right)$	-274.87(4)	-282.14(5)	-275.9(1)	-283.38(4)	-265.21(1)	-272.74(3)	-266.12(3)	-273.65(3)	-251.52(1)	-258.96(3)	-251.73(4)	-259.10(2)
${ }^{1} J\left(\mathrm{P}_{\mathrm{D}} \mathrm{P}_{\mathrm{E}}\right)$	-396.21(5)	-393.13(5)	-393.7(1)	-390.84(5)	-385.97(1)	-382.22(3)	-383.27(3)	-379.64(3)	-368.17(1)	-363.57(3)	-365.81(4)	-361.15(3)
${ }^{2} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{C}}\right)$	73.53(4)	82.72(4)	64.3(1)	72.97(4)	73.88(1)	83.16(6)	64.99 (3)	73.48(3)	72.75 (1)	81.77(3)	63.75 (3)	$71.94(2)$
${ }^{2} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{D}}\right)$	15.33(4)	13.58(6)	21.3(1)	18.91(5)	15.86(1)	13.91(4)	22.13 (4)	19.77(3)	17.03(1)	15.07(4)	23.63(4)	$21.39(2)$
${ }^{2} J\left(\mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{C}}\right)$	59.49(4)	50.33(9)	65.5(1)	55.30 (4)	59.45(1)	50.24(3)	65.15 (3)	55.12(3)	60.28(1)	50.97(3)	65.84(3)	55.85(2)
${ }^{2} J\left(\mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{D}}\right)$	-8.71(5)	-12.56(8)	-9.7(1)	-12.97(4)	-8.67(1)	-11.90(3)	-9.49(3)	-12.63(3)	-8.51(1)	-11.38(3)	-9.24(4)	-11.86(3)
${ }^{2} J\left(\mathrm{P}_{\mathrm{C}} \mathrm{P}_{\mathrm{E}}\right)$	43.54(4)	44.12(4)	48.6(1)	49.83(4)	44.57(1)	45.21(3)	49.39(3)	50.70(3)	45.51(1)	46.50(2)	50.12(3)	51.76(2)
rms	0.10	0.09	0.24	0.10	0.03	0.07	0.07	0.07	0.03	0.06	0.07	0.05

fits of the spectra. All spectra were fitted using the program NUMARIT, ${ }^{11}$ and the resulting parameters were confirmed by simulation of the spectra using Win-DAISY and Win-NMR 1D. ${ }^{12,13}$ Chemical shifts and coupling constants are given in Table 2.

Ab initio calculations

The Ahlrichs basis sets pVDZ and pTZV (triple zeta valence with Ahlrichs single d polarisation functions added) ${ }^{14,15}$ offer two levels of restricted Hartree-Fock (RHF) calculation which we have previously found to predict very similar geometries for $\mathrm{P}_{2} \mathrm{Se}_{5}{ }^{16}$ Calculations using the Ahlrichs pVDZ basis (there called SVP) have been reported for an extensive series of polyphosphanes. ${ }^{17}$ We used the lower pVDZ level for geometry optimisation of $\mathrm{P}_{5} \mathrm{E}_{2} \mathrm{X}$ molecules to provide atomic coordinates for our single point calculations of electron density and GIAO calculations of NMR shieldings, using the higher pTZV level. The Ahlrichs basis sets extend only up to Kr so our calculations were restricted to the eight molecules $\mathrm{P}_{5} \mathrm{E}_{2} \mathrm{X}$ with $\mathrm{X}=\mathrm{Cl}$ or Br . The geometries found were confirmed as true minima, by vibrational analysis in each case.

Bond lengths, bond angles, and enough torsion angles to define the geometries, found by redundant internal coordinate optimisation at the RHF/pVDZ level, are given in Table 1 of the Supplementary Data, and energies are given in Supplementary Table 2. Files are provided in Supplementary Data for online viewing of the structures. Distortions from C_{s} symmetry are best seen as the non-bonded distances between atoms P_{D}, E_{a} and E_{b}, so these are presented here, along with bond angles, in Table 3. We note the following: (a) $P_{D} \cdots S_{a}>P_{D} \cdots S_{b}$, showing that the repulsion of S_{a} by halogen is greater than repulsion of S_{b} by the lone pair of P_{D}; (b) $\mathrm{P}_{\mathrm{D}} \cdots \mathrm{S}_{\mathrm{a}}$ increases more on replacement of S by $S e$ than $P_{D} \cdots S_{b}$ does; (c) $P_{D} \cdots S_{a}$ increases at the expense of both other contacts when Br replaces $C l$. Observation (b) shows that the $P_{D} \cdots E_{b}$ contact is more compressible than the $\mathrm{P}_{\mathrm{D}} \cdots \mathrm{E}_{\mathrm{a}}$ contact, even though that is longer. The electron density found by the $a b$ initio calculations was analysed by the Natural Bond Orbital (NBO) method. ${ }^{18}$ This showed that repulsions in the plane $\mathrm{P}_{\mathrm{D}}, \mathrm{E}_{\mathrm{a}}, \mathrm{E}_{\mathrm{b}}$ could be visualised in terms of p-type lone pair orbitals on E_{a} and E_{b} overlapping each other and the $P_{D}-C l$ σ-bonding orbital or the lone pair orbital on P_{D} respectively. This is shown for $\mathrm{P}_{5} \mathrm{~S}_{2} \mathrm{Cl}$ in Fig. 1, where it can be seen that the lone pair orbital of S_{a} also overlaps a chlorine lone pair orbital, increasing the repulsive interaction on the $P_{D} \cdots S_{a}$ side of the molecule. Observation (c) above shows that if the lone pair on P_{D} has a higher steric demand in the bromothan in the chloro-compounds, this is more than compensated by the greater combined demand of bromine non-bonding and bonding orbitals. In going from $\mathrm{P}_{5} \mathrm{~S}_{2} \mathrm{Cl}$ to $\mathrm{P}_{5} \mathrm{Se}_{2} \mathrm{Cl}$, the ratios of the required increases in the non-bonded distances $\mathrm{E}_{\mathrm{a}} \cdots \mathrm{E}_{\mathrm{b}}$ and $\mathrm{E} \cdots \mathrm{P}_{\mathrm{D}}$ to the increases in the bond lengths $\mathrm{E}-\mathrm{P}_{\mathrm{C}}$ are related to changes in the bond angles at P_{C}. These ratios are such that the bond angles at P_{C} stay practically constant, causing bond angles at E to decrease strongly and bond angles in the five-membered rings at other phosphorus atoms to increase. The extra length of $\mathrm{P}-\mathrm{P}$ bonds to P_{D}, compared with $\mathrm{P}-\mathrm{S}$ bonds, makes P_{C} nearer to P_{A} or P_{B} than to P_{E}. The extra repulsion of $P_{D}-X$ for E_{a} compared with E_{b} draws P_{C} slightly closer to P_{A} than to P_{B}, when $E_{a}=E_{b}$, and bond angles to chalcogen are slightly greater at P_{A} than at P_{B}.

In single point RHF/pTZV calculations at RHF/pVDZ geometries the isomers $\mathrm{P}_{5} \mathrm{~S}_{\mathrm{a}} \mathrm{Se}_{\mathrm{b}} \mathrm{X}$ were found to have lower RHF energy than $\mathrm{P}_{5} \mathrm{Se}_{\mathrm{a}} \mathrm{S}_{\mathrm{b}} \mathrm{X}$, by $3.29(\mathrm{X}=\mathrm{Cl})$ and $3.45 \mathrm{~kJ} \mathrm{~mol}^{-1}$ ($\mathrm{X}=\mathrm{Br}$), in accord with relative abundances observed after their thermal preparation and with the greater distortion from C_{s} cage symmetry caused by placing the larger selenium in cage position E_{a}, commented upon above.

Table 3 Selected ab initio geometric data for $\mathrm{P}_{5} \mathrm{E}_{2} \mathrm{X} \mathbf{1}(\mathrm{X}=\mathrm{Cl}$ or Br$)$

	$\mathrm{P}_{5} \mathrm{~S}_{2} \mathrm{Cl}$	$\mathrm{P}_{5} \mathrm{~S}_{\mathrm{a}} \mathrm{Se}_{\mathrm{b}} \mathrm{Cl}$	$\mathrm{P}_{5} \mathrm{Se}_{\mathrm{a}} \mathrm{S}_{\mathrm{b}} \mathrm{Cl}$	$\mathrm{P}_{5} \mathrm{Se}_{2} \mathrm{Cl}$	$\mathrm{P}_{5} \mathrm{~S}_{2} \mathrm{Br}$	$\mathrm{P}_{5} \mathrm{Sa}_{\mathrm{a}} \mathrm{Se}_{\mathrm{b}} \mathrm{Br}$	$\mathrm{P}_{5} \mathrm{Se}_{\mathrm{a}} \mathrm{S}_{\mathrm{b}} \mathrm{Br}$	$\mathrm{P}_{5} \mathrm{Se}_{2} \mathrm{Br}$
Bond lengths (\AA)								
$\mathrm{P}_{\mathrm{C}}-\mathrm{E}_{\mathrm{a}}$	2.111	2.111	2.250	2.251	2.111	2.111	2.251	2.252
$\mathrm{P}_{\mathrm{C}}-\mathrm{E}_{\mathrm{b}}$	2.119	2.257	2.117	2.255	2.118	2.259	2.118	2.256
$\mathrm{P}_{\mathrm{A}}-\mathrm{E}_{\mathrm{a}}$	2.128	2.129	2.264	2.265	2.127	2.128	2.263	2.265
$\mathrm{P}_{\mathrm{B}}-\mathrm{E}_{\mathrm{b}}$	2.155	2.294	2.157	2.297	2.154	2.292	2.157	2.296
Bond angles (${ }^{\circ}$)								
$\mathrm{P}_{\mathrm{D}}-\mathrm{P}_{\mathrm{C}}-\mathrm{E}_{\mathrm{a}}$	102.72	102.78	103.28	103.28	103.10	103.09	103.67	103.64
$\mathrm{P}_{\mathrm{D}}-\mathrm{P}_{\mathrm{C}}-\mathrm{E}_{\mathrm{b}}$	93.38	93.32	93.22	93.14	93.17	93.07	92.94	92.90
$\mathrm{E}_{\mathrm{a}}-\mathrm{P}_{\mathrm{C}}-\mathrm{E}_{\mathrm{b}}$	100.92	101.02	100.98	101.15	100.68	100.79	100.74	100.88
$\mathrm{P}_{\mathrm{A}}-\mathrm{P}_{\mathrm{E}}-\mathrm{P}_{\mathrm{B}}$	60.06	60.09	60.04	60.05	60.05	60.06	60.00	60.03
$\mathrm{P}_{\mathrm{A}}-\mathrm{P}_{\mathrm{E}}-\mathrm{P}_{\mathrm{D}}$	105.08	105.03	106.75	106.72	105.30	105.21	106.93	106.91
$\mathrm{P}_{\mathrm{B}}-\mathrm{P}_{\mathrm{E}}-\mathrm{P}_{\mathrm{D}}$	99.45	100.90	99.22	100.71	99.29	100.75	99.05	100.53
$\mathrm{P}_{\mathrm{E}}-\mathrm{P}_{\mathrm{A}}-\mathrm{P}_{\mathrm{B}}$	60.04	60.03	60.09	60.07	60.03	60.04	60.11	60.07
$\mathrm{P}_{\mathrm{E}}-\mathrm{P}_{\mathrm{A}}-\mathrm{E}_{\mathrm{a}}$	105.68	105.73	106.18	106.17	105.68	105.72	106.25	106.21
$\mathrm{P}_{\mathrm{B}}-\mathrm{P}_{\mathrm{A}}-\mathrm{E}_{\mathrm{a}}$	104.31	105.95	104.90	106.50	104.25	105.86	104.86	106.44
$\mathrm{P}_{\mathrm{E}}-\mathrm{P}_{\mathrm{B}}-\mathrm{P}_{\mathrm{A}}$	59.89	59.88	59.88	59.87	59.92	59.90 105.8	59.88	59.90
$\mathrm{P}_{\mathrm{E}}-\mathrm{P}_{\mathrm{B}}-\mathrm{E}_{\mathrm{b}}$	105.04	105.30	105.04	105.26	105.01	105.28	104.99	105.28
$\mathrm{P}_{\mathrm{A}}-\mathrm{P}_{\mathrm{B}}-\mathrm{E}_{\mathrm{b}}$	103.47	103.89	104.91	105.33	103.37	103.87	104.85	105.28
$\mathrm{P}_{\mathrm{C}}-\mathrm{P}_{\mathrm{D}}-\mathrm{P}_{\mathrm{E}}$	100.49	101.44	101.55	102.55	100.45	101.43	101.55	102.52
$\mathrm{P}_{\mathrm{C}}-\mathrm{P}_{\mathrm{D}}-\mathrm{X}$	100.92	100.73	101.55	101.34	101.53	101.30	102.22	101.98
$\mathrm{P}_{\mathrm{E}}-\mathrm{P}_{\mathrm{D}}-\mathrm{X}$	99.94	99.12	100.37	99.53	100.32	99.52	100.78	99.98
$\mathrm{P}_{\mathrm{C}}-\mathrm{E}_{\mathrm{a}}-\mathrm{P}_{\mathrm{A}}$	103.26	104.24	98.67	99.65	103.29	104.29	98.67	99.67
$\mathrm{P}_{\mathrm{C}}-\mathrm{E}_{\mathrm{b}}-\mathrm{P}_{\mathrm{B}}$	102.95	98.44	104.02	99.51	103.01	98.48	104.06	99.54
Non-bonded distances (\AA)								
$\mathrm{P}_{\mathrm{D}} \cdots \mathrm{E}_{\mathrm{a}}$	3.392	3.391	3.511	3.509	3.401	3.398	3.521	3.519
$\mathrm{P}_{\mathrm{D}} \cdots \mathrm{E}_{\mathrm{b}}$	3.166	3.262	3.158	3.253	3.160	3.256	3.151	3.248
$\mathrm{E}_{\mathrm{a}} \cdots \mathrm{E}_{\mathrm{b}}$	3.262	3.373	3.370	3.480	3.256	3.368	3.366	3.475

Geometries were optimized at the RHF/Ahlrichs pVDZ level. Further bond lengths, torsion angles, charges and energies are given in Tables 1 and 2 of the Supplementary Data.

Fig. 1 Non-bonding overlaps of pre-orthogonal NBOs in the $\mathrm{S}_{\mathrm{a}} \mathrm{S}_{\mathrm{b}} \mathrm{P}_{\mathrm{D}}$ plane of $\mathrm{P}_{5} \mathrm{~S}_{2} \mathrm{Cl}$, seen from the direction of P_{C}.

Prediction of chemical shifts

For $\mathrm{P}_{5} \mathrm{~S}_{2} \mathrm{Cl}$ with RHF/pVDZ-optimised geometry, GIAO calculations were done at RHF/pVDZ and RHF/pTZV levels and at the density functional BLYP/pVDZ, B3LYP/pVDZ and BLYP/ pTZV levels. Besides this, GIAO-BLYP/pVDZ and BLYP/ pTZV calculations were done using the geometry obtained by optimisation at the BLYP/pVDZ level, and GIAO-B3LYP/ pVDZ on a B3LYP/pVDZ geometry. Errors of prediction of shieldings arise chiefly because (a) the level of GIAO calculation used is insufficient and (b) the calculation is for isolated gas-phase molecules and takes no account of different interactions with solvent. In principle, an empirical linear relationship between sets of observed shifts and of calculated shieldings could be fitted. In fact, at these levels of calculation, the multiplier of calculated shielding is found to be not significantly different from -1 , so the problem amounts to finding the constant in eqn. (3).
predicted shift $=$ constant - calculated shielding

Eqn. (4), where n is the number of observations, can be used to

$$
\begin{align*}
& \text { constant }= \\
& \qquad \frac{1}{n}(\Sigma(\text { observed shifts })+\Sigma(\text { calculated shieldings })) \tag{4}
\end{align*}
$$

find the constant without prior assignment of chemical shifts within the investigated series. Thus, different constants can be found for different series, according to the nature of the assignment sought, eliminating some of the errors from sources (a) and (b) above.

For a single compound with several observed chemical shifts, identification can be supported and multiplets assigned to atoms, by calculating a single constant for that compound for the level of calculation used, over all observed shifts. Calculated chemical shifts for $\mathrm{P}_{5} \mathrm{~S}_{2} \mathrm{Cl}$, obtained in this way and given along with their root mean square deviations from the observed shifts in Table 4, allow comparison between the levels of calculation. While RHF/pTZV is better than RHF/pVDZ, particularly in the important task of distinguishing P_{A} and $\mathrm{P}_{\mathrm{B}}, \mathrm{BLYP} / \mathrm{pVDZ}$ is superior to either, particularly in predicting a reasonable value for $\delta\left(\mathrm{P}_{\mathrm{C}}\right)$. The advantage is lost, however, at the BLYP/pTZV level. This may be because more sophisticated polarisation and diffuse functions are required at the higher level, which for this size of molecule would have led to impracticably long calculations using our currently available computing facilities. B3LYP/pVDZ gave shieldings which fitted slightly less well than did BLYP/pVDZ. We therefore proceeded to carry out GIAO-BLYP/pVDZ calculations using RHF/pVDZ geometries for the other seven chlorides or bromides. In all cases the correlation between observed chemical shifts and calculated shieldings was better (overall Pearson $r=-0.997$) than for GIAO-RHF/pTZV ($r=-0.991$), as shown in Fig. 2. Shifts for

Table 4 Experimental and calculated chemical shifts for $\mathrm{P}_{5} \mathrm{~S}_{2} \mathrm{Cl}$

Method		Atom					rms deviation
GIAO calc.	Geometry	$\mathrm{P}_{\text {A }}$	$\mathrm{P}_{\text {B }}$	P_{C}	$\mathrm{P}_{\text {D }}$	P_{E}	
Experimental:							
		-70.56	-49.48	31.64	199.58	-212.59	
Calculated: ${ }^{\text {a }}$							
RHF/pVDZ	RHF/pVDZ	-76.16	-71.32	51.26	184.81	-190.00	18.01
RHF/pTZV	RHF/pVDZ	-83.81	-70.99	55.01	197.28	- 198.90	16.60
BLYP/pVDZ	RHF/pVDZ	-73.95	-58.53	37.32	210.44	-216.70	7.22
BLYP/pTZV	RHF/pVDZ	-82.70	-57.57	40.37	231.15	-232.64	18.37
B3LYP/pVDZ	RHF/pVDZ	-74.62	-63.46	41.30	207.32	-211.94	8.55
BLYP/pVDZ	BLYP/pVDZ	-66.31	-57.90	46.85	205.61	-229.65	11.38
BLYP/pTZV	BLYP/pVDZ	-74.84	-58.16	50.30	227.86	-246.57	21.89
B3LYP/pVDZ	B3LYP/pVDZ	-71.08	-60.27	44.76	203.34	-218.17	8.17

${ }^{a}$ Using one constant for the compound for each method, obtained empirically using eqn. (4).

Fig. 2 Regression, for all phosphorus atoms of $\mathrm{P}_{5} \mathrm{E}_{2} \mathrm{X}$, of observed chemical shifts on shielding calculated using (a) GIAO-RHF/pTZV or (b) GIAO-BLYP/pVDZ.
P_{A} and P_{B} were predicted to be in the order shown in Table 2, for all compounds. Individual shieldings from both levels of calculation are given in Table 3 of the Supplementary Data. As shown for $\mathrm{P}_{5} \mathrm{~S}_{2} \mathrm{Cl}$ in Table 4, geometry optimisation at the $\mathrm{BLYP} / \mathrm{pVDZ}$ level failed to yield better fits to the observed chemical shifts. A similar conclusion was reached for $\mathrm{P}_{5} \mathrm{Se}_{\mathrm{a}} \mathrm{S}_{\mathrm{b}} \mathrm{Cl}$. We therefore have no evidence that density functional geometries are more realistic for the present molecules than HartreeFock geometries, for the basis sets and method we have tried, so Hartree-Fock geometries are used throughout this paper.

The presence of five non-equivalent phosphorus atoms per molecule is relatively unusual, and a potentially more useful application of eqn. (4) is to calculate a constant for a particular atom position over a series of related molecules, rather than for all atom positions within one molecule. This allows better fits than when the constant is obtained for several atom positions as well as several molecules, and in general can allow isomers, diastereomers or rotamers to be assigned to NMR signals. The present series of molecules, in which only the identities of single
atoms vary, provides a useful test of this method. If differences in observed shifts and in calculated shieldings, with stepwise replacement of sulfur by selenium or chlorine by bromine, are compared for each atom position, then the need to find constants disappears. The differences are given in Table 5, using codes for the replacements shown in Scheme 1, for both GIAO-

Scheme 1 Codes for formal replacements of atoms in $\mathrm{P}_{5} \mathrm{E}_{2} \mathrm{X}(\mathrm{E}=\mathrm{S}$ or $\mathrm{Se} ; \mathrm{X}=\mathrm{Cl}, \mathrm{Br}$ or I): replacements $a_{1 n}$ or $a_{2 n}$ of S by Se at position $\mathrm{E}_{\mathrm{a}}, b_{1 n}$ or $b_{2 n}$ at E_{b}; replacements $x_{11}-x_{41}$ of Cl by $\mathrm{Br}, x_{12}-x_{42}$ of Br by I .

RHF/pTZV and BLYP/pVDZ calculations. At the RHF/pTZV level, the changes in shift were predicted to be in the observed directions, using the present assignment of spectra, for all atom positions and for all replacements, except for $\delta\left(\mathrm{P}_{\mathrm{C}}\right)$ under halogen replacement and for $\delta\left(\mathrm{P}_{\mathrm{A}}\right)$ in replacement x_{21} (where both observed and calculated differences were almost zero). The sizes of some of the changes were well predicted. The difference data confirm the identification of the compounds and the assignment of the spectra, without necessarily interpreting the values of coupling constants. Either observed or calculated differences in chemical shifts, on chalcogen replacements a or b, have only a small dependence on the identity of the halogen X , and differences x on halogen replacement are similar across all four S, Se skeletons. The effects of chalcogen and halogen replacement are almost independent. The table of observed differences is remarkably similar to that for $\beta-\mathrm{P}_{4} \mathrm{E}_{3}(\mathrm{I}) \mathrm{CHI}_{2} 3$, for which a comparable replacement scheme was presented, ${ }^{5}$ even though those compounds do not have closed cage structures.

In contrast, the differences predicted at the BLYP/pVDZ level show a generally much poorer correspondence to observed differences, especially for phosphorus atoms adjacent to the substitution site, e.g. P_{A} in substitutions a. Only 43 out of 60

Table 5 Differences in NMR chemical shifts on atom replacement

Replacement ${ }^{\text {a }}$	Molecules ${ }^{\text {b }}$			Observed or calculated ${ }^{c}$	Atom				
	$\mathrm{E}_{\text {a }}$	E_{b}	X		$\mathrm{P}_{\text {A }}$	$\mathrm{P}_{\text {B }}$	P_{C}	$\mathrm{P}_{\text {D }}$	P_{E}
a_{11}	E	S	Cl	obs.	-11.08	4.24	-9.32	9.31	9.47
				HF	-6.86	9.61	-1.74	10.54	13.69
				DF	2.31	6.47	5.70	12.14	13.43
a_{12}	E	S	Br	obs.	-11.14	4.58	-9.20	9.83	9.07
				HF	-5.96	9.71	-0.99	11.91	13.60
				DF	2.83	6.53	6.53	13.97	13.70
a_{13}	E	S	I	obs.	-11.02	5.16	-9.00	11.35	8.38
a_{21}	E	Se	Cl	obs.	-11.99	4.14	-11.71	9.13	9.70
				HF	-6.55	9.56	-4.09	10.77	13.68
				DF	2.19	5.98	4.60	12.11	12.99
a_{22}	E	Se	Br	obs.	-12.06	4.52	-11.61	9.64	9.29
				HF	-6.42	9.98	-3.59	12.52	13.95
				DF	1.95	6.43	4.90	14.72	13.56
	E	Se		obs.	-11.94	5.09	-11.07	11.39	8.60
b_{11}	S	E	Cl	obs.	4.98	-14.89	-5.45	6.60	13.73
				HF	9.97	-12.47	-2.80	6.51	13.27
				DF	7.93	-4.51	7.39	4.96	13.46
b_{12}	S	E	Br	obs.	5.32	-14.54	-6.48	6.50	13.26
				HF	10.82	-12.21	-2.71	6.45	12.97
				DF	9.01	-4.33	7.71	4.46	12.86
b_{13}	S	E	I	obs.	6.33	-13.51	-8.45	8.22	12.73
b_{21}	Se	E	Cl		4.07	-14.99	-7.84	6.42	13.96
				HF	10.28	-12.52	-5.15	6.74	13.26
				DF	7.81	-5.00	6.29	4.93	13.02
b_{22}	Se	E	Br		4.40	-14.60	-8.89	6.31	13.48
				HF	10.36	-11.94	-5.31	7.06	13.32
				DF	8.13	-4.43	6.08	5.21	12.72
b_{23}	Se	E	I	obs.	5.41	-13.58	-10.52	8.26	12.95
x_{11}	S	S	X			-2.63	-1.30	-29.87	3.48
				HF	-0.48	-2.87	3.09	-24.25	4.01
				DF	-0.11	-4.14	2.45	-20.62	3.87
x_{12}	S	S	X	obs.	-1.33	-5.22	-0.43	-58.36	8.87
x_{21}	Se	S	X			-2.29	-1.18	-29.35	3.08
				HF	0.42	-2.77	3.84	-22.88	3.92
				DF	0.41	-4.08	3.28	-18.79	4.14
x_{22}	Se	S		obs.	-1.21	-4.64	-0.23	-56.84	8.18
x_{31}	S	Se	X	obs.	0.15	-2.28	-2.33	-29.97	3.01
				HF	0.37	-2.61	3.18	-24.31	3.71
				DF	0.97	-3.96	2.77	-21.12	3.27
	S			obs.	-0.32	-4.19	-2.40	-56.64	8.34
x_{41}	Se	Se	X	obs.	0.08	-1.90	-2.23	-29.46	2.60
				HF	0.50	-2.19	3.68	-22.56	3.98
				DF	0.73	-3.51	3.07	-18.51	3.84
x_{42}	Se	Se	X	obs.	-0.20	-3.62	-1.86	-54.89	7.65

${ }^{a}$ Replacement codes defined in Scheme 1. ${ }^{b} \mathrm{E}$ or X represents the atom which changes in the replacement. ${ }^{c}$ Calculated as -(difference in ab initio isotropic shieldings): $\mathrm{HF}=\mathrm{GIAO}-\mathrm{RHF} / \mathrm{pTZV} ; \mathrm{DF}=\mathrm{GIAO}-\mathrm{BLYP} / \mathrm{pVDZ}$ (using RHF/pVDZ geometries in both cases).
differences were predicted to be in the observed directions, compared with 55 out of 60 at the RHF/pTZV level. Differences for substitution $a_{11}\left(\mathrm{P}_{5} \mathrm{Se}_{\mathrm{a}} \mathrm{S}_{\mathrm{b}} \mathrm{Cl}-\mathrm{P}_{5} \mathrm{~S}_{2} \mathrm{Cl}\right)$, except for $\delta\left(\mathrm{P}_{\mathrm{B}}\right)$, were yet more poorly predicted if geometries optimised at the BLYP/pVDZ or B3LYP/pVDZ levels were used. We conclude that while single point calculations at a DF level deal better than RHF calculations with grossly different chemical environments, when comparing atom positions within a molecule, other errors at the DF level are less removable by taking differences between molecules. For the work on comparison of coupling constants between molecules, described below, the RHF/pTZV rather than BLYP/pVDZ calculations were used.

Prediction of coupling constants

GIAO calculations of NMR shielding are a standard procedure, although an advance presented here is to apply them to differences on atom substitution so as to eliminate part of the error. In contrast, non-empirical routes to coupling constants in heavy-atom complex molecules appear to have not yet reached a comparable popularity. An approximate calculation may be used and some unknown terms in it may be ignored, providing that the relationship between the numbers obtained and a set of
measured coupling constants is obtained statistically. As in the case of chemical shifts, the best way of eliminating unknowns is to consider changes with stepwise substitution.

Phosphorus-phosphorus couplings have been found to involve mainly the Fermi contact mechanism, ${ }^{19}$ for which the simplest approximation is given by McConnell's eqn. (5). ${ }^{20}$

$$
\begin{equation*}
\left|J_{\mathrm{AB}}\right| \propto P_{\mathrm{AB}}^{2} \quad \text { where } \quad P_{\mathrm{AB}}=2 \sum_{i}^{\text {occ. MOs }} c_{i \mathrm{~A}} c_{i \mathrm{~B}} \tag{5}
\end{equation*}
$$

Here $c_{i \mathrm{~A}}$ and $c_{i \mathrm{~B}}$ are the coefficients of the valence shell s orbitals of coupled atoms A and B in molecular orbital $i ; P_{\mathrm{AB}}$ is a density matrix element measuring the total simultaneous involvement of both atomic orbitals A and B in the total electron density. The inaccuracy inherent in this method arises because the constant of proportionality is clearly not constant, though it may be nearly so between closely related couplings. To treat a large, non-symmetric molecule, LCAO coefficients may be obtained by $a b$ initio methods, but the difficulty arises of distinguishing what are valence shell s orbitals for use in McConnell's equation. We have used NBO analysis to decompose the calculated electron density into orthogonal Natural Atomic Orbitals (NAOs). The NBO program, marketed as part of the GAUSSIAN 94 software, ${ }^{7,18}$ allows output

Fig. 3 Regression of $|J|$ on P^{2}, for all $\mathrm{P}-\mathrm{P}$ couplings of $\mathrm{P}_{5} \mathrm{E}_{2} \mathrm{X}$ except ${ }^{1} J\left(\mathrm{P}_{\mathrm{C}} \mathrm{P}_{\mathrm{D}}\right)$. The regression line is constrained to pass through the origin.
of the density matrix in terms of NAOs, and matrix elements P_{AB} can be selected from this for use in McConnell's equation. Using the Ahlrichs pTZV basis, as in the GIAO shielding calculations, the NBO analysis found that density matrix elements of the type $P_{3 \mathrm{sA4sB}}$ were smaller but significant, compared with the expected elements $P_{3 \mathrm{sA3sB}}$. However, multiple regression of the observed P-P couplings on $\mathrm{P}_{3 \mathrm{sA4sB}}+P_{4 \mathrm{sA} 3 \mathrm{sB}}$ as well as $P_{3 \mathrm{sA} 3 \mathrm{sB}}$, for each kind of coupling in the set of molecules $\mathrm{P}_{5} \mathrm{E}_{2} \mathrm{X}$, showed that no significantly better predictive ability can be gained by including the $P_{3 \mathrm{sA} 4 \mathrm{sB}}$ elements than by simply taking the $P_{3 \mathrm{sA} 3 \mathrm{sB}}$ elements, usually because the sum $P_{3 \mathrm{sA} 4 \mathrm{sB}}+P_{4 \mathrm{sA} 3 \mathrm{sB}}$ correlated too well with $P_{3 \mathrm{sA} 3 \mathrm{sB}}$. Similarly, for selected pairs of couplings, the sum of density elements for all pairwise combinations of 1 s , $2 \mathrm{~s}, 3 \mathrm{~s}$ and 4 s orbitals, on the two atoms involved in each coupling, was examined but found to give no better relative values of the couplings than by taking the $P_{3 \mathrm{sA} 3 \mathrm{sB}}$ value alone. For the coupling ${ }^{1} J\left(\mathrm{P}_{\mathrm{D}} \mathrm{P}_{\mathrm{E}}\right)$ of $\mathrm{P}_{5} \mathrm{~S}_{2} \mathrm{Cl}$ the composition of the sum $P_{3 \mathrm{sD} 3 \mathrm{sE}}$ was examined. It was found to include positive and negative components $c_{i \mathrm{D}} c_{i \mathrm{E}}$ up to 3.4 times bigger than the total. The largest 19 components out of 62 needed to be included to account for 98% of the value of P_{DE}, so, apart from the approximations implicit in using McConnell's equation, the values of P used are likely to be quite sensitive to errors in the NAO coefficients and hence to the quality of the ab initio calculation.

Values of P^{2} obtained are shown in Table 4 of the Supplementary Data. If couplings ${ }^{1} J\left(\mathrm{P}_{\mathrm{C}} \mathrm{P}_{\mathrm{D}}\right)$ were excluded, $|J|$ was found to correlate well with $P^{2}(r=0.995)$, fitting a regression eqn. (6) as shown in Fig. 3. Taking each type of coupling

$$
\begin{equation*}
|J|=37257(\sigma 307) P^{2} \tag{6}
\end{equation*}
$$

separately, differences examined were smaller relative to the errors in the model, so poorer correlation was found. Deviations from the individual regression lines were systematic, such that if vectors corresponding to replacements a or b (Scheme 1) were drawn on the regression plots they formed similar quadrilaterals for chloro- and bromo-compounds, approximating to parallelograms. As an example, the plot for ${ }^{1} J\left(\mathrm{P}_{\mathrm{C}} \mathrm{P}_{\mathrm{D}}\right)(r=0.749)$ is shown in Fig. 4. Prediction of the relative sizes of changes on element replacement was not accurate enough to be useful, but the assignment of spectra to compounds could be supported by examining how many of these changes were predicted to be in the observed directions. We found that the calculated direction of (non-zero) changes agreed with experiment in 36/40 cases for replacements $a, 32 / 40$ for replacements b, and 28/36 for replacements x. The assignment was thus validated: in particular, the assignments of the ${ }^{2} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{C}}\right)$ and ${ }^{2} J\left(\mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{C}}\right)$ couplings for $\mathrm{P}_{5} \mathrm{~S}_{\mathrm{a}} \mathrm{Se}_{\mathrm{b}} \mathrm{X}$ and $\mathrm{P}_{5} \mathrm{Se}_{\mathrm{a}} \mathrm{S}_{\mathrm{b}} \mathrm{X}$, and hence the identification of the P_{A} versus P_{B} multiplets for these compounds, were confirmed.

Intrinsically more accurate methods require at least a knowledge of energies of both occupied and virtual MOs, as well as of the coefficients of s orbitals in them. We experimented with Pople and Santry's mutual polarisability method (eqn. (7), ${ }^{21}$

Fig. 4 Regression of $\left|{ }^{1} J\left(\mathrm{P}_{\mathrm{C}} \mathrm{P}_{\mathrm{D}}\right)\right|$ of $\mathrm{P}_{5} \mathrm{E}_{2} \mathrm{X}$ on P^{2}, showing vectors for atom replacements a and b.

Fig. 5 Separate regression of ${ }^{1} J$ and ${ }^{2} J$ couplings of $\mathrm{P}_{5} \mathrm{E}_{2} \mathrm{X}$ on π. Both regression lines are constrained to pass through the origin.

$$
\begin{align*}
& J_{\mathrm{AB}} \propto \pi_{\mathrm{AB}} \text { where } \pi_{\mathrm{AB}}= \\
& \tag{7}\\
& -4 \sum_{i} \sum_{j}^{\text {occ. MOs }} \sum_{j}^{\text {virt. MOs }} c_{i \mathrm{~A}} c_{i \mathrm{~B}} c_{j \mathrm{~A}} c_{j \mathrm{~B}} /\left(\varepsilon_{j}-\varepsilon_{i}\right)
\end{align*}
$$

using the same level of theory and using NBO analysis to obtain coefficients of 3 s orbitals, as for the experiments with McConnell's method. Here ε_{j} and ε_{i} are ab initio energies of virtual and occupied delocalised MOs. Now, for π_{DE} of $\mathrm{P}_{5} \mathrm{~S}_{2} \mathrm{Cl}$, the largest component was 5.3 times the total, and 570 components needed to be included to accumulate 98% of the sum. This method is clearly much more sensitive to errors in the LCAO coefficients than is that based on the McConnell equation.
The values of π obtained are included in Table 4 of the Supplementary Data. While the McConnell equation yields only relative magnitudes of couplings, the Pople and Santry equation gives also their signs. These were correctly predicted for all of the present couplings, except for ${ }^{2} J\left(\mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{D}}\right)$, where the predicted values were almost zero. ${ }^{1} J$ and ${ }^{2} J$ couplings were found to fit two different regression lines on π, as shown in Fig. 5, with correlation coefficients 0.924 and 0.935 , and gradients 81540 ($\sigma 1632$) and 13790 (σ 643) respectively. The cluster of points for ${ }^{1} J\left(\mathrm{P}_{\mathrm{C}} \mathrm{P}_{\mathrm{D}}\right)$ was near to the regression line for all ${ }^{1} J$ couplings, in contrast to the McConnell's equation plot, probably showing that a different 'average excitation energy' was needed for these couplings, rather than the Fermi contact mechanism being less important. Fits of individual kinds of ${ }^{2} J$ couplings (except for $\left.{ }^{2} J\left(\mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{D}}\right)\right)$ to π were slightly better than, but very similar to, fits to P^{2} in the McConnell method, while fits of individual kinds of ${ }^{1} J$ couplings were clearly poorer. Altogether, correct directions of change were predicted in 32/40 cases for replacements a, 23/40 for replacements b, and $25 / 36$ for replacements x. We conclude that greater susceptibility to error outweighs the greater sophistication of the Pople and Santry approach, and that the further computational effort required to accumulate π is not worthwhile.

Rationalisation of NMR parameters

The well-known 'heavy atom effect' broadly explains the moves to lower frequency of $\delta\left(\mathrm{P}_{\mathrm{D}}\right)$ on replacements x, and of $\delta\left(\mathrm{P}_{\mathrm{C}}\right)$ and $\delta\left(\mathrm{P}_{\mathrm{A}}\right)$ or $\delta\left(\mathrm{P}_{\mathrm{B}}\right)$ on replacements a or b respectively (Table 5). ${ }^{22}$ However, increasing the endocyclic bond angle at three-co-ordinate phosphorus leads generally to a higher frequency chemical shift, so where introducing the heavier neighbour causes an increase in bond angle, this opposes the heavy atom effect. There is a bigger increase in angles at P_{A} on replacements a than at P_{B} on replacements b, and the observed (and calculated) changes in $\delta\left(\mathrm{P}_{\mathrm{A}}\right)$ are less negative than in $\delta\left(\mathrm{P}_{\mathrm{B}}\right)$. The positive changes in $\delta\left(\mathrm{P}_{\mathrm{A}}\right)$ on replacements b, of $\delta\left(\mathrm{P}_{\mathrm{B}}\right)$ on replacements a, and on $\delta\left(\mathrm{P}_{\mathrm{D}}\right)$ and $\delta\left(\mathrm{P}_{\mathrm{E}}\right)$ on replacements of either kind are all associated with increases in bond angles.

The lower chemical shift $\delta\left(\mathrm{P}_{\mathrm{A}}\right)$ than $\delta\left(\mathrm{P}_{\mathrm{B}}\right)$, when $\mathrm{E}_{\mathrm{a}}=\mathrm{E}_{\mathrm{b}}$, is contrary to bond angle arguments, and P_{A} and E_{a} are calculated to carry less electron density than P_{B} and E_{b} respectively (Table 1 of Supplementary Data), yet the GIAO calculations using the same model correctly predict that P_{A} is more shielded. P_{E} is calculated to carry a slight negative charge, which is practically unchanged on replacement of chlorine by bromine, as too is the sum of the bond angles at phosphorus, yet P_{E} becomes less shielded in this replacement, both in experiment and in theory.

The couplings transmitted by chalcogen, ${ }^{2} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{C}}\right)$ and ${ }^{2} J\left(\mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{C}}\right)$, are substantially different when $\mathrm{E}_{\mathrm{a}}=\mathrm{E}_{\mathrm{b}}$, because of the different influence of the halogen atom on the two chalcogen atoms, yet the value of each of these couplings is remarkably insensitive to the nature of the halogen. The bond angle at E_{a} is almost the same as that at E_{b}, but the bigger coupling ${ }^{2} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{C}}\right)$ seems to be associated with a shorter distance $\mathrm{P}_{\mathrm{A}}-\mathrm{E}_{\mathrm{a}}$ than $P_{B}-E_{b}$, caused by the nearer approach of P_{C} to P_{A} than to P_{B}, described above.

Experimental

All experiments were carried out by glove-box or Schlenk techniques, under dry and O_{2}-free argon. CS_{2} (Merck) was dried by distillation from $\mathrm{P}_{4} \mathrm{O}_{10}$. Purities and suppliers of reagents were: red phosphorus, 99.9999%, Knapsack; sulfur, 99.95%, Merck; grey selenium, $99.999 \%, \mathrm{ABCR} ; \mathrm{PCl}_{3},>99 \%$, $\mathrm{Strem} ; \mathrm{PBr}_{3}$, $>98 \%$, Fluka; $\mathrm{PI}_{3},>99 \%$, Merck. NMR spectra of solutions in CS_{2} were measured in 5 mm diameter tubes using a Bruker AC250 spectrometer operating at 101.3 MHz for ${ }^{31} \mathrm{P}$. Sealed capillaries containing $\mathrm{C}_{6} \mathrm{D}_{6}$ were used for locking, and chemical shifts, obtained by substitution experiments using the same capillaries, are reported relative to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$-water.

Typical experiment: preparation of a solution containing $\mathbf{P}_{5} \mathbf{S}_{n} \mathrm{Se}_{2-n} \mathrm{Br}(\boldsymbol{n}=\mathbf{0 - 2})$

CAUTION: while the described procedure was designed to minimise risk, the exothermic reactions of phosphorus with chalcogens, together with the chance of generating high pressures in sealed ampoules, lead to the slight possibility of explosions. Furnaces should be suitably sited and their possible decontamination planned for.
A mixture of red phosphorus ($3.10 \mathrm{~g}, 100 \mathrm{mmol} \mathrm{P}$), sulfur $(1.20 \mathrm{~g}, 37.5 \mathrm{mmol} \mathrm{S})$ and grey selenium ($2.96 \mathrm{~g}, 37.5 \mathrm{mmol} \mathrm{Se}$) was sealed under vacuum in a glass ampoule, heated at $10^{\circ} \mathrm{C}$ h^{-1} to $250^{\circ} \mathrm{C}$, and held there for two days. The cooled and crushed product was recrystallised from CS_{2} to give an intermediate with average composition $\mathrm{P}_{4} \mathrm{~S}_{1.4} \mathrm{Se}_{1.6}$ (found by ${ }^{31} \mathrm{P}$ NMR integration of signals due to molecules $\mathrm{P}_{4} \mathrm{~S}_{n} \mathrm{Se}_{3-n}(n=$ $0-3$) in its solution), and average molecular weight 294.9 g mol^{-1}. This material $(1.59 \mathrm{~g}, 5.39 \mathrm{mmol})$ was mixed with further red phosphorus ($1.00 \mathrm{~g}, 32.3 \mathrm{mmol} \mathrm{P}$), loaded into a strong quartz glass ampoule ($15 \mathrm{~cm} \times 8 \mathrm{~mm}$ diameter), then $\mathrm{PBr}_{3}(0.73$ $\mathrm{g}, 2.70 \mathrm{mmol}$) added. The ampoule, sealed while containing dry argon, was heated at $10^{\circ} \mathrm{C} \mathrm{h}^{-1}$ to $350^{\circ} \mathrm{C}$, with pauses of six hours each at 120 and at $250^{\circ} \mathrm{C}$. The melt was annealed at
$350^{\circ} \mathrm{C}$ until it became pale orange-yellow (72 h). The cooled ampoule was opened and crushed under Ar , the resulting mass stirred with $\mathrm{CS}_{2}\left(20 \mathrm{~cm}^{3}\right)$ for 12 h at $21^{\circ} \mathrm{C}$, and the solution filtered to remove insoluble products and quartz fragments. Solvent was evaporated under vacuum at ambient temperature, to leave $c a .7 \mathrm{~cm}^{3}$ of product solution. ${ }^{31} \mathrm{P}$ NMR integration showed the solution to contain PBr_{3} (15.3), $\alpha-\mathrm{P}_{4} \mathrm{E}_{3} \mathrm{Br}_{2}$ (29.0), $\mathrm{P}_{4} \mathrm{E}_{3}$ (50.1) and $\mathrm{P}_{5} \mathrm{E}_{2} \mathrm{Br}(4.3 \mathrm{~mol} \%)$, with the $\mathrm{P}_{4} \mathrm{E}_{3}$ and $\mathrm{P}_{5} \mathrm{E}_{2} \mathrm{Br}$ components distributed as shown in Table 1. For experiments using PI_{3} or PCl_{3}, annealing times at $350{ }^{\circ} \mathrm{C}$ were 48 and 96 h respectively. In the reaction of PCl_{3} with red phosphorus and chalcogens (eqn. (2)) very slow heating to $120^{\circ} \mathrm{C}$ was required on account of the volatility of PCl_{3}.

For the ab initio calculations, Ahlrichs pVDZ and TZV basis sets were obtained from the EMSL basis set database. ${ }^{23}$ The same single d-type polarisation functions were added to the TZV set to make pTZV , as were provided in the pVDZ set.

Acknowledgements

We thank the British German Academic Research Collaboration Programme (ARC) for financial support, Dr M. N. S. Hill (University of Newcastle) for help in obtaining NMR spectra and Dr U. Weber (Bruker Analytik GmbH) for her expert support of our use of Win-DAISY and Win-NMR 1D.

References

1 B. W. Tattershall and N. L. Kendall, Polyhedron, 1994, 13, 2629.
2 R. Blachnik, A. Hepp, P. Lönnecke, J. A. Donkin and B. W. Tattershall, Z. Anorg. Allg. Chem., 1994, 620, 1925.
3 R. Blachnik, P. Lönnecke and B. W. Tattershall, J. Chem. Soc., Dalton Trans., 1992, 3105.
4 P. Lönnecke and R. Blachnik, Z. Anorg. Allg. Chem., 1993, 619, 1257.

5 B. W. Tattershall, R. Blachnik and A. Hepp, Polyhedron, 1995, 14, 1779.

6 P. Lönnecke, R. Blachnik and B. W. Tattershall, Z. Anorg. Allg. Chem., 1994, 620, 1115.
7 M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, GAUSSIAN 94, Revision E.2, Gaussian Inc., Pittsburgh, PA, 1995.

8 B. W. Tattershall, J. Chem. Soc., Dalton Trans., 1987, 1515.
9 R. Blachnik, K. Hackmann and H.-P. Baldus, Z. Naturforsch., Teil B, 1991, 46, 1165.
10 M. Baudler, R. Heumüller and K. Langerbeins, Z. Anorg. Allg. Chem., 1984, 514, 7.
11 A. R. Quirt, J. S. Martin and K. M. Worvill, NUMARIT, Version 771, SERC NMR Program Library, Daresbury, 1977.
12 Win-DAISY, Bruker-Franzen Analytik, Bremen, 1996.
13 Win-NMR 1D, Bruker-Franzen Analytik, Bremen, 1996.
14 A. Schäfer, H. Horn and R. Ahlrichs, J. Chem. Phys., 1992, 97, 2571.

15 A. Schäfer, C. Huber and R. Ahlrichs, J. Chem. Phys., 1994, 100, 5829.

16 B. W. Tattershall, E. L. Sandham and W. Clegg, J. Chem. Soc., Dalton Trans., 1997, 81.
17 S. Böcker and M. Häser, Z. Anorg. Allg. Chem., 1995, 621, 258.
18 A. E. Reed, L. A. Curtiss and F. Weinhold, Chem. Rev., 1988, 88, 899.

19 H. O. Gavarini, M. A. Natiello and R. H. Contreras, Theor. Chim. Acta, 1985, 68, 171.
20 H. M. McConnell, J. Chem. Phys., 1956, 24, 460.
21 J. A. Pople and D. P. Santry, Mol. Phys., 1964, 8, 1.
22 M. Kaupp, O. L. Malkina, V. G. Malkin and P. Pyykkö, Chem. Eur. J., 1998, 4, 118.

23 Extensible Computational Chemistry Environment Basis Set Database, Version 1.0, Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory, Richland, Washington, 1999. http://www.emsl.pnl.gov:2080/forms/basisform. html

